for software, and Bruker GmbH for their cooperation in the modification of our spectrometer. This work was supported in part by the NSF (Grant DMB-8517959) and by the NIH (Grant AM 34909). B.A.M. acknowledges receipt of a Herbert Johnson travel grant and a Commonwealth Postgraduate Research Award.

## Coenzyme $\mathbf{B}_{12}$ Co-C Bond Homolysis: Insights from Qualitative Molecular Orbital Theory

Carlo Mealli,* ${ }^{\dagger}$ Michal Sabat, ${ }^{\dagger}$ and Luigi G. Marzilli*†<br>Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, C.N.R. Florence, Italy<br>Department of Chemistry, Emory University Atlanta, Georgia 30322<br>Received July 29, 1986

From extensive investigations into the factors which influence $\mathrm{Co}-\mathrm{C}$ bond cleavage in coenzyme $\mathrm{B}_{12},{ }^{1}$ a few features are now well established: (i) the enzymatic cleavage is homolytic; (ii) the measured dissociation energy is $\mathrm{ca} .25-30 \mathrm{kcal} / \mathrm{mol}^{1 \mathrm{~b}, \mathrm{~d}}$ (iii) this energy increases with increasing basicity of the trans ligand in relevant organocobalt compounds. ${ }^{16}$ Many structures of such compounds with different substituents at both the axial carbon and nitrogen ligating atoms have shown that in some cases the $\mathrm{Co}-\mathrm{C}$ and $\mathrm{Co}-\mathrm{N}$ bonds can elongate by $>0.1 \AA$ from unstrained values $(\mathrm{Co}-\mathrm{C} \approx 2.00, \mathrm{Co}-\mathrm{N} \approx 2.10 \AA)^{2}$ This elongation is evidence for the dependence of bond length on steric effects and on the trans influence. Approximate ab initio studies of geometrical deformations introduced in a model system did not reveal the existence of any major electronic effect. ${ }^{3}$

Herein we outline some insights, based on qualitative MO and perturbation theories, ${ }^{4}$ into the $\mathrm{Co}-\mathrm{C}$ dissociation process. The shortcomings of $\mathrm{EHMO}^{5}$ in providing correct bond distances do not obscure the essential effects which our study illustrates. The model employed, $\mathbf{1}$, contains simplified ligands, especially for the corrin.


[^0]

Figure 1. Evolution of MOs for the model $\left[\left(\mathrm{NH}_{2}\right) \mathrm{Co}(\mathrm{HN}=\mathrm{CH}-\right.$ $\left.\mathrm{CH}=\mathrm{NH})_{2} \mathrm{Co}\left(\mathrm{CH}_{3}\right)\right]^{+}$: (A) the $\mathrm{Co}-\mathrm{N}$ (amido group) bond is elongated with $\mathrm{Co}-\mathrm{C}$ fixed at $2.05 \AA$; (B) the $\mathrm{Co}_{0}-\mathrm{C}$ bond is elongated with $\mathrm{Co}-\mathrm{N}$ fixed at $2.1 \AA$; (C) the $\mathrm{Co}-\mathrm{C}$ bond is elongated with $\mathrm{Co}-\mathrm{N}$ fixed at $2.4 \AA$.

However, our interest focuses on the axial interactions along $\mathrm{N}-\mathrm{Co}-\mathrm{C}$ as illustrated in $2{ }^{7}$ The metal atom in the square plane

contributes with two fundamental levels: i.e., almost pure $z^{2}$ and $\mathrm{p}_{2}$ orbitals. The groups $\mathrm{NH}_{2}$ and $\mathrm{CH}_{3}$ each utilize a $\sigma$ hybrid. For electronegativity reasons, $\sigma\left(\mathrm{NH}_{2}\right)$ lies below $\sigma\left(\mathrm{CH}_{3}\right)$, which is closer to $z^{2}$.
Of the four MOs, the two lower ones ( $\sigma_{1}$ and $\sigma_{2}$ ) are populated. An oversimplified view of the nature of $\sigma_{1}$ and $\sigma_{2}$ is to equate them with the bonding combinations $z^{2}-\sigma\left(\mathrm{NH}_{2}\right)$ and $\mathrm{p}_{\mathrm{z}}-\sigma\left(\mathrm{CH}_{3}\right)$, respectively. Actually, second-order perturbations complicate the composition of $\sigma_{2}, \mathbf{3}$. Both the metal $\boldsymbol{z}^{2}$ and $\sigma\left(\mathrm{NH}_{2}\right)$ levels are

(7) As found by others, ${ }^{8}$ we observe that the important axial MOs are perturbed by p combinations of the conjugated equatorial ligands (the corrinoid ring in coenzyme $\mathrm{B}_{12}$ ). However, the perturbation does not alter other important features and may be disregarded as a first approximation.
(8) Salem, L.; Eisenstein, O.; Anh, N. T.; Burgi, H. B.; Devaquet, A.; Segal, A.; Veillard, A. Nouv. J. Chim. 1977, $l, 335$.
mixing in an antibonding manner. In essence $\sigma_{2}$ has $\mathrm{Co}-\mathrm{C}$ bonding and $\mathrm{Co}-\mathrm{N}$ antibonding character. Finally $\sigma_{3}, 4$, is both $\mathrm{Co}-\mathrm{C}$ and $\mathrm{Co}-\mathrm{N}$ antibonding. This latter MO may be also viewed as one member of the $\mathrm{e}_{\mathrm{g}}$ set ( $z^{2}$ and $x y$ ) of an octahedral complex.

In Figure 1A, the effects of $\mathrm{Co}-\mathrm{N}$ bond elongation on the $\sigma$ levels ( $\mathrm{Co}-\mathrm{C}$ maintained at $2.05 \AA$ ) are easily understood. In the lower energy region, below the populated octahedral $\mathrm{t}_{2 \mathrm{~g}}$ set, $\sigma_{1}$ rises due to the loss of $\mathrm{M}-\mathrm{N}$ bonding whereas $\sigma_{2}$ falls slowly because of its partial $\mathrm{M}-\mathrm{N} \sigma^{*}$ character. For the same reason $\sigma_{3}$ also falls. The other $\mathrm{e}_{\mathrm{g}}$ level ( $x y$ ) is unaffected. Finally, two $\pi^{*}$ combinations of the equatorial ligands, ${ }^{9}$ located between $t_{2 g}$ and $\mathrm{e}_{8}$, are unimportant for our considerations. What matters is that the total energy variation ${ }^{10}$ is not large since $\sigma_{1}$ and $\sigma_{2}$ have opposite behavior and lie below the frontier region. In agreement with more sophisticated calculations, ${ }^{3}$ a $\mathrm{Co}-\mathrm{N}$ elongation from 2.1 to $2.4 \AA$ costs only $6-8 \mathrm{kcal} / \mathrm{mol}$. In terms of the $\sigma$ interaction between the combining fragments $\mathrm{L}_{5} \mathrm{M}^{11}$ and $\mathrm{CH}_{3},{ }^{12} 5$, the larger the $p_{z}=z^{2}$ mixing at the metal atom, the more developed is the $\sigma$ lobe of $\mathrm{L}_{5} \mathrm{M}$ and the better is the overlap with $\sigma\left(\mathrm{CH}_{3}\right)$. The pd hybridization in $\mathrm{L}_{5} \mathrm{M}$ increases with the amount of antibonding introduced by the axial ligand. ${ }^{9}$ In the present case it depends on the relative position of the amide group and on its strength as a base, in agreement with point iii above.

Next the $\mathrm{Co}-\mathrm{C}$ bond is elongated with $\mathrm{Co}-\mathrm{N}$ set at $2.1 \AA$ (Figure 1B). The level $\sigma_{1}, \mathrm{Co}-\mathrm{N}$ bonding, is hardly affected, whereas $\sigma_{2}$ destabilizes because it loses $\mathrm{C}_{0}-\mathrm{C}$ bonding energy. The $\mathrm{Co}-\mathrm{C}$ antibonding $\sigma_{3} \mathrm{MO}$ stabilizes. ${ }^{13}$ When the Co and C atoms are definitely separated $(\mathrm{Co}-\mathrm{C}>3.6 \AA)$, the $\mathrm{MOs} \sigma_{2}$ and $\sigma_{3}$ coincide with the $\mathrm{CH}_{3}$ and $\mathrm{L}_{5} \mathrm{M}$ lobes which combine in 5 . In other words, $\sigma_{2}$ and $\sigma_{3}$ correlate with the methyl and pd metal hybrids, respectively. As a consequence, the two $\mathrm{Co}-\mathrm{C}$ bonding electrons in $\sigma_{2}$ become more and more localized in the methyl group. Were the process not obstructed by a significant energy increase (mainly that lost by the two electrons in $\sigma_{2}$ ), the $\mathrm{Co}-\mathrm{C}$ cleavage would be heterolytic with formation of a methyl anion and a square-pyramidal $\mathrm{d}^{6}$ metal complex.

As mentioned, the hybridization and energy of the $\mathrm{L}_{5} \mathrm{M} \sigma$ orbital are strongly dependent on the position of the trans axial ligand. It may happen that for a certain $\mathrm{Co}-\mathrm{N}$ elongation the final relative positions of $\sigma_{2}$ and $\sigma_{3}$ levels are reversed. Figure 1C shows the evolution of the MOs for the $\mathrm{Co}-\mathrm{C}$ elongation, with $\mathrm{Co}-\mathrm{N}$ fixed at $2.4 \AA$. Apparently, the solid lines behave similarly to Figure 1B but the smoothness of the $\sigma_{2}$ and $\sigma_{3}$ curves hides an essential feature: namely, a strongly avoided crossing region. According to electron transfer reaction theory, ${ }^{14}$ this region accounts for the possibility of promoting a sudden electron jump. In other words, rather than having an ionic separation of the fragments $\left(\mathrm{CH}_{3}{ }^{-}\right.$and $\left.\mathrm{L}_{5} \mathrm{Co}^{\mathrm{III}}\right)$, the system may convert into a radical pair $\left(\mathrm{CH}_{3}{ }^{0}\right.$ and $\left.\mathrm{L}_{5} \mathrm{Co}^{\mathrm{Il}}\right)$. In order to switch character the two levels, $\sigma_{2}$ and $\sigma_{3}$ must intermix. A Mulliken analysis of the atomic charges confirms that a major variation is associated with the dashed lines region. In fact, for the diamagnetic ground-state model with short $\mathrm{Co}-\mathrm{C}$ and $\mathrm{Co}-\mathrm{N}$ bonds, the charge of the carbon atom is somewhat negative and that of the metal slightly positive. As the $\mathrm{Co}-\mathrm{C}$ bond lengthens, the carbon atom becomes smoothly more negative and the cobalt atom more positive. However, for a stretched $\mathrm{Co}-\mathrm{N}$ bond (e.g., $2.4 \AA$ ), the carbon becomes more positive and the metal negative due to a progressively larger metal character in the doubly populated $\sigma_{2}$ orbital.
(9) The levels are largely in-phase (S) and out-of-phase (A) combinations of a $\pi^{*}$ orbital of the ligand $\mathrm{HN}=\mathrm{CH}-\mathrm{CH}=\mathrm{NH}$.
(10) The EHMO method assigns an absolute energy minimum at $\mathrm{Co}-\mathrm{C}$ and $\mathrm{Co}-\mathrm{N}$ distances both equal to $2.0 \AA$.
(11) Elian, M.; Hoffmann, R. Inorg. Chem. 1975, 14, 1058.
(12) Gimarc, B. M. In Molecular Structure and Bonding, Academic: New York, 1979.
(13) Crossings of $\sigma_{2}$ and $\sigma_{3}$ with $\mathrm{t}_{2 \mathrm{~g}}$ and ligand $\pi^{*}$ levels have no major consequences.
(14) The argument is exhaustively treated in the textbook: Salem, L. Electrons in Chemical Reactions: First Principles; Wiley-Interscience: New York, 1982. For a more specific theoretical treatment of electron-transfer reactions concerning metal elements, see: (a) Burdett, J. K. Inorg. Chem. 1978, 17, 2537. (b) Burdett, J. K. Comments Inorg., Chem. 1981, $1,85$.

The monoelectronic wavefunctions in EHMO are inadequate in evaluating reliable energetics associated with the sudden electron jump. The energy of the diradical system is computed to be about $60-70 \mathrm{kcal} / \mathrm{mol}$ higher than that of the diamagnetic octahedral structure. However, in response to changes in relevant interelectronic effects, it may be profitable to promote an electron in a higher level so that the total energy loss is compensated. The process is probably analogous to the dissociation of $\mathrm{Na}-\mathrm{Cl}$ into Na and Cl atoms. ${ }^{15}$

In conclusion, we have gained some idea of the conditions required for $\mathrm{Co}-\mathrm{C}$ homolysis in coenzyme $\mathrm{B}_{12}$. A weakening of the trans $\mathrm{C} 0-\mathrm{N}$ bond forces the carbon and metal orbitals to mix at nonbonding distances and is the necessary step for the genesis of the alkyl radical. The energetics required for such a $\mathrm{Co}-\mathrm{N}$ weakening are low and the activation may be provided by minor conformational rearrangements introduced by the binding of coenzyme to apoenzyme or the binding of substrate to holoenzyme. ${ }^{1}$
Acknowledgment. L.G.M. thanks the NIH for support through Grant GM 29225.
(15) An MO treatment also leads to the wrong products ( $\mathrm{Na}^{+}$and $\mathrm{Cl}^{-}$ ions) but the problem is solved at the VB level by mixing ionic and covalent contributions to the wavefunction. ${ }^{12}$

## Probing the Binding Site of Bacteriorhodopsin with a Fluorescent Chromophore

Timor Baasov and Mordechai Sheves* ${ }^{*}$

## Department of Organic Chemistry The Weizmann Institute of Science <br> Rehovot 76100, Israel

Received August 4, 1986
The discovery of bacteriorhodopsin (bR), the protein pigment of the purple membrane of the halophilic microorganism Halobacterium halobium, ${ }^{1}$ had a significant impact on the field of bioenergetics and on the study of visual photochemistry. ${ }^{2}$ It was found that photobiological activity of bR is due to a pigment consisting of a retinal (all-trans) chromophore covalently bound to a protein through a protonated Schiff base.
Electrostatic interactions in the binding site of bacteriorhodopsin play an important role in its function and properties. Its red-shifted absorption (relative to a protonated Schiff base in methanol solution) was attributed in part to a weaker interaction between the positively charged Schiff base nitrogen and its counteranion ${ }^{3}$ and to electrostatic interaction of the retinal polyene with a dipole introduced by the protein in the vicinity of the $\beta$-ionone ring. ${ }^{3 \mathrm{~d}, 4}$ The electrostatic interaction may also play a role in catalyzing the thermal isomerization of all-trans to 13 -cis-bR in the dark adaption reaction and in the thermal isomerization of the $\mathrm{M}_{412}$ intermediate. ${ }^{5}$ In addition, it was proposed ${ }^{6}$ that the reduction

[^1]
[^0]:    ${ }^{+}$C.N.R.
    ${ }^{\text {t }}$ Emory University
    (1) (a) The most comprehensive review articles are in: $B_{12}$; Dolphin, D., Ed.; Wiley-Interscience: New York, 1982. See: (b) Halpern, J. Science (Washington, D.C.) 1985, 227, 69. (c) Finke, R. G.; Schiraldi, D. A.; Mayer, B. J. Coord. Chem. Rev. 1984, 54, 1. Reference 2 for recent reviews. (d) Hay, B. P.; Finke, R. G. J. Am. Chem. Soc. 1986, I08, 4820.
    (2) Bresciani-Pahor, N.; Forcolin, M.; Marzilli, L. G.; Randaccio, L.; Summers, M. F.; Toscano, P. J. Coord. Chem. Rev. 1985, 63, 1. Marzilli, L. G.; Summers, M. F.; Bresciani-Pahor, N.; Zangrando, E.; Charland, J.-P.; Randaccio, L. J. Am. Chem. Soc. 1985, 107, 6880.
    (3) Christianson, D. W.; Lipscomb, W. N. J. Am. Chem. Soc. 1985, 107, 2682.
    (4) The most recent and comprehensive summary of qualitative MO theory, with special emphasis on transition-metal elements, is in: Albright, T . A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; Wi-ley-Interscience: New York, 1985.
    (5) Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. Hoffmann, R.; Lipscomb, W. H. Ibid. 1962, 36, 1379, 3489; 1962, 37, 2872.
    (6) In $B_{12}$ the coordination environment of the metal is not perfectly octahedral and the four equatorial ligands are not all equivalent. The $\mathrm{NH}_{2}$ group simulates the two-electron $\sigma$-donor function of benzimidazole as well as some of its $\pi$-donor character.

[^1]:    ${ }^{\dagger}$ Incumbent of the Morris and Ida Wolf Career Development Chair.
    (1) Oesterhelt, D.; Stoeckenius, W. Nature (London) New Biol. 1971, 233, 149-152.
    (2) (a) Ottolenghi, M. Adv. Photochem. 1980, 12, 97-200. (b) Stoeckenius, W.; Lozier, R.; Bogomolni, R. A. Biochem. Biophys. Acta 1979, 505, 215-278.
    (3) (a) Blatz, P.; Mohler, J. Biochemistry 1975, 14, 2304-2305. (b) Sheves, M.; Albeck, A.; Friedman, N.; Ottolenghi, M. Biochemistry 1985, 24, 1260-1265. (c) Muradin-Szweykowska, M.; Pardoen, J. A.; Dobbelstein, D.; Van Amsterdam, L. J. P.; Lugtenburg, J. Eur. J. Biochem. 1984, 140 , 173-176. (d) Spudich, J. L.; McCain, D. A.; Nakanishi, K.; Okabe, M.; Shimizu, N.; Rodman, H.; Honig, B.; Bogomolni, R. A. Biophys. J. 1986, 49, 479-483. (e) Baasov, T.; Sheves, M. J. Am. Chem. Soc. 1985, 107 , 7524-7533.
    (4) (a) Harbison, G. S.; Smith, S. O.; Pardoen, J. A.; Courtin, J. M. L.; Lugtenburg, J.; Herzfeld, J.; Mathies, R. A.; Griffin, R. G. Biochemistry 1985, 24, 6955-6962. (b) Lugtenburg, J.; Muradin-Szweykowska, M.; Heeremans, C.; Pardoen, J. A.; Harbison, G. S.; Herzfeld, J.; Griffin, R. G.; Smith, S. O.; Mathies, R. J. Am. Chem. Soc. 1986, 108, 3104-3105.

